First- and Second-Order Asymptotics in Covert Communication
نویسندگان
چکیده
منابع مشابه
Second-Order Asymptotics in Covert Communication
We study the firstand second-order asymptotics of covert communication with Pulse-Position Modulation (PPM) over binary-input Discrete Memoryless Channels (DMCs) for three different metrics of covertness. When covertness is measured in terms of the relative entropy between the channel output distributions induced with and without communication, we characterize the exact PPM second-order asympto...
متن کاملSecond Order Asymptotics for Communication under Strong Asynchronism
The capacity under strong asynchronism was recently shown to be essentially unaffected by the imposed output sampling rate ρ and decoding delay d—the elapsed time between when information is available at the transmitter and when it is decoded. This paper examines this result in the finite blocklength regime and shows that, by contrast with capacity, the second order term in the rate expansion i...
متن کاملefl students gender and socioeconomic status: the use of politeness strategies in the first and second languages
within the components of communicative competence, a special emphasis is put on the “rules of politeness,” specifically the politeness strategies (brown and levinson, 1978) that speakers deploy when performing the request speech act. this is because the degree of imposition that making a request places upon one’s interlocutor(s) has been seen to be influenced by several factors among which, as ...
On the second order first zagreb index
Inspired by the chemical applications of higher-order connectivity index (or Randic index), we consider here the higher-order first Zagreb index of a molecular graph. In this paper, we study the linear regression analysis of the second order first Zagreb index with the entropy and acentric factor of an octane isomers. The linear model, based on the second order first Zag...
متن کاملSecond-order asymptotics in channel coding
BASED on the channel coding theorem, there exists a sequence of codes for the given channel W such that the average error probability goes to 0 when the transmission rate R is less than CW . That is, if the number n of applications of the channel W is sufficiently large, the average error probability of a good code goes to 0. In order to evaluate the average error probability with finite n, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2019
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2018.2878526